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was less for the horizontal configuration experiments than for either
the vertical or the HOB experiments. The gages were mounted near and
on the ground in the area around ground zero (GZ) and on four qun
barrels as shown in Figures 2.1 and 2.2. The gun barrels were 54 feet
high, except the last station was 53 feet high. |In addition to pressure
gages, smoke puffs and photographic backdrops were used so that the
dynamics of shockwaves could be photographed. Figure 2.2 partially
shows both the smoke puff array and the ten 50 x 30 foot photographic
screens used as aids to photograph the motion of the shockwaves.
Examples of the incident, reflected and Mach-region shockwaves and their
triple-point as recorded against the photographic screen background are
presented in Figures 2.3 and 2.4. The two vertical gun barrels, alter-
nately painted black and white, are 40 and 60 feet to the right of GZ.
In Figure 2.3 the shockwaves are at about 80 feet from GZ and along the
hard ground surface, while in Figure 2.4, they are further away below
the ideal reflective surface. An example of the effect of an anomally
on the shockwaves' interactions are shown in Figures 2.5 and 2.6. Com-
pare the Mach-region shockwaves of Fiqures 2.4 and 2.6 to see the effect
of the jet on the smoothness of the shock front.

The results presented in this report cover shockwave information
derived from film records obtained from the vertical configurations and
HOB experiments. The planned height-of-bursts for the lower charge of
the muitiple 1000-pound experiments were 15 and 25 feet and 15 feet for
the 216-pound detonations. The positioning of the charges at the

required heights was accomplished by placing the lower charge at a
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given HOB above the real surface and the upper charge at three times
this HOB. When the charges were initiated simul taneously the ideal
reflective plane was equidistant to the two charges, i.e., at two times
the desired HOB. Ground zero for the ideal reflective plane is a point
of intersection of the plane to a line drawn from the surface ground
zero point through the center of both charges. The planned charge
positions for the HOB Events were 47, 60, 90, 120, and 144 feet above
the real reflective surface.

The two, real reflective surfaces for Phase 2 were natural
alluvium (smooth) and irregular, soft ground (rough) which was obtained
by plowing the natural alluvial surface in concentric furrows around
GZ. The furrows were approximately 14 inches deep and contained small
scattered amounts of snow which had been deposited over a number of days
prior to the detonation of Events 10 and 11. Figures 2.7 through 2.10
present shockwave photographs from the ideal and soft reflective surfaces
of Event I,

The reflective surface for Phase 3 was a specially prepared sur-
face of cemented soil topped with oil. The cement was mixed with the
natural earth and water was added after smoothing the mixture. An oil
topping was placed soon after the water was added. The surface was
changed for the HOB Events to asphalt which extended out to about 70
feet from GZ.

Table 2.1 presents information on the charge HOB, weight and
relative time delays for Events 7 through 24, and Table 2.2 presents
environmental conditions which existed during shot time for the same

events. (Refs. 1, 2, 3 and &)
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22 INSTRUMENTATION AND FIELD OPERATION

The DIPOLE WEST Series were photographed from as many as five
camera stations for Events 1 through 6 and four camera stations for
Events 7 through 11 and backup to six stations for Events 17 through 24,
The cloud development and rise for Event 1 through 6 were photographed
at three remote stations located at approximately 0° (north), 120° and
240° at distances of 2,300 to 2,500 feet from GZ. The main camera
station (MCS) which housed the very early-time recording cameras, was
located 600 feet from GZ at approximately 90° (Events 1 through 6) or
180° (Events 7 through 24). In addition, shockwave/surface interaction
was photographed from a camera station located 1,000 feet from GZ at
270° (west) for Events 1 through 6. The smoke puffs and photographic
backdrops which were viewed from the main camera station were used for
Events 7 through 24,

The high-speed cameras were not only located on the ground sur-
face at the main camera station but also in two tower locations 30 or
57 feet above the ground depending on the separation distance between
the charges. During the HOB series the shockwave propagation out to
over 360 feet from GZ was photographed from two additional stations
(A & B) which were situated to one side of the main camera station at
locations which kept the backdrop screens in view. Tables 2.3, 2.4
and 2.5 present camera information for Events 7 through 24.

The Defence Research Establishment Suffield (DRES) was responsi-
ble for the timing and firing (T&F) and the smoke-puff technical
photography; whereas, the Denver Research Institute was responsible for

the technical photography of the shockwaves along the real and ideal
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TABLE 2.5

DRI Camera Fields-of-View for Shockwave
Photography Events 17 Through 24

NOVA Fastax 1 Fastax 2 Fastax 3 Fastax 4

Event (ft) (ft) (ft) (ft) (ft)
17 GZ-50 50-100 100-150 150-198 198-250
18 GZ-50 50-100 100-150 150-198 198-250
19 50-100 100-150 150-198 198-250 250-300
20 100-150 150-198 198-250 250-300 300-350
Z] 100-150 150-198 198-250 250-300 300-350
22 100-150 150-198 198-250 250-300 300-350
23 100-150 150-198 198-250 250-300 300-350
24 50-100 100=150 150-198 198-250 250-300
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reflective surfaces with the photographic screens in the background and
all other aspects of the detonation phenomena.

The DRES T&F bunker was located approximately 1,500 feet from
GZ near the BRL recording van which contained tape decks and conditioning

equipment which recorded the dynamics of the shockwave interactions.
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SECTION 3

RESULTS AND DISCUSSION

The results and discussion from seven of the nine vertical con-
figuration experiments (Events 7 through 16) and all eight of the HOB
experiments (Events 17 through 24) are presented in the following
paragraphs. Event 7 produced a fireball anomaly (jet) which degraded
the shockwaves that aeveloped along the real and ideal reflective sur-
faces in the direction of the photographic backdrops; also, Event 14
was detonated under poor ambient light conditions so that no good
photographic records were available for data reduction. As a result,
Events 7 and 14 data are omitted from this report.

Figures 3.1 through 3.6 show a sequence of photographs of the
fireballs from Event 8 which were obtained from two simultaneously deto-
nated 1,000-pound pentolite spheres positioned at a planned HOB of 25
feet. Figure 3.7 presents fireball sequences from simultaneous and
nonsimul taneous detonations which were obtained from 216-pound pentolite
spheres placed at a planned HOB of 15 feet. Note how different the
geometries of the fireballs are at similar times. The upper charge
was always detonated before the lower charge during the nonsimultaneous
events. The planned separation time of 10 milliseconds was the largest
value used. This time increment was still short enough so as not to
cause any adverse effect upon the second charge prior to its detonation.
Figures 3.8 through 3.11 present shockwaves generated at nearly similar

times from the events presented in Fiqure 3.7.
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Figure 3.7 Continued
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The data which follow were derived from high-speed photographic
sequences of shockwaves obtained with the aid of the photographic back-
drops. Shockwave data derived from the smoke puff array will be pre~
sented in another document which will be forthcoming from the University
of Victoria, B.C., Canada.

The position-time data of shockwaves from Events 7 through 16
were obtained over distances of approximately 35 to 85 feet from GZ
along both the real and ideal reflective surfaces; whereas, free-air
and Mach-region shockwaves' position-time data were obtained at distances
ranging anywhere from 30 to 360 feet from GZ for the HOB Events 17
through 24. Least-squaros?”d degree curve fits were made to these data.
Time-of=-arrival data were derived from these curve fits at five foot
increments over the range of measurements made. Slopes (incremental
velocities) were determined at these same distances. These velocities
were then used in the Rankin-Hugoniot equation to determine peak over-
pressures.

The simultaneity or the time differential of the multiple deton-
ations were determined photographically from Dynafax camera records ob-
tained at over 25,000 frames per second at an exposure time of under
one microsecond and electronically with tape recording equipment. The
photographic results indicated that the charges detonated on the average
within 5 microseconds of each other for the simultaneous detonations
and within 40 microseconds of the prescribed time differential for the

nonsimul taneous detonations.
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Sl POSITION-TIME DATA FROM EVENTS 8 THROUGH 16

The DRI position-time curves from shcckwaves photographed during
Events 8 through 16 are plotted with BRL gage data in Figures 3.12
through 3.33 along both the real and ideal surfaces and in free~air (FA)
with the exception of Fiqgures 3.12 and 3.13 which present raw position-
time data points obtained from DRI photographic records. These two
figures are presented to show the degree of variations in the raw
position-time data obtained photographically. Due to a loss of the
detonation zero signal, BRL time-of-arrival cage data are missing from
Event 9. Mach position-time data derived from the least-squares para-
bolic curve fits to the raw data are presented in Tables 3.1 through
3.10. Free-air shockwave positions were measured from the center of
the upper charge (CC) during the nonsimul taneous detonations of Event
12 and 15. Due to poor ambient light, Event 15 position-time data are
limited to FA only. Event 16 photographic records did not allow FA
time-of-arrival to be obtained due to the small time differential of 3
milliseconds. The BRL FA gage data furnished with the DR] position-
time data were obtained at gage distances from GZ of 20, 30, 40 and 60
feet at a height of 30 feet above the ground surface. The distances
from CC to these gages give slant ranges of 22.4, 33.5, 44.7 and 67.0
feet. (Refs. 1 and 2)

There is generally good correlation between the photographic
shockwave time-of-arrival data and the gage data for these events.
There are some differences between the photographic data and the gage

data for a few of the events. Since the photographed positions of the
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Figure 3.12. Shockwave Position-Time "“rom DRI Photographic Data

Points Along Real Reflective Surface From Event 8.
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Figure 3.13. Shockwave Position-Time From DRI Photographic Data
Points Along ldeal Reflective Surface From Event 8.
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Figure 3.17. DRI Shockwave Position-Time Curve Along
Ideal Surface From Event 9, HOB = 15 Feet.
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Figure 3.18. DRI Shockwave Position-Time Curve and BRL Gage Data
Along Real Surface From Event 10, HOB = 15 Feet.
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Figure 3.22. DRI Shockwave Position-Time Curves From Events

8, 9, 10 and 11 Along Real Surfaces.
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Figure 3.23. DRI Shockwave Position-Time Curves From Events
8, 9, 10 and 11 Along Ideal Surfaces.
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Data Along Real Surface From Event 13, HOB = 15 Feet.
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shockwaves were measured to the actual GZ, part of the difference
between the DRl and BRL data for these few events can be attributed to
some discrepancy in the assumed gage distance to that of the actual
distance from GZ which could have produced a later time-of-arrival at
the gages. Another condition which may have caused some divergence
between photographic and gage position-time data is the fact that the
gages were at different azimuths about GZ, therefore, any asymmetry in
the shock envelope could have produced time-of-arrivals which were
variant in the direction of the gages. The DRI photographic shockwave
position-time data for Events 8 through 16 were determined in a plane
through the forty-foot, gqun barrel, gage station.

Generally speaking it can be said that the photographic position-
time data compare well with the actual gage measured values. As was
expected, the slope of the curve fit to the shockwave position-time data
was greater for the ideal reflective plane than for either the smooth or
rough surfaces, except for Event 8 which were about the same. In
addition, as was expected, the slope of the curve fit through the shock-
wave position-time data was greater for the smooth surface than for the
rough surface. Except for Event 8, the curve fits to shockwave position=~
time data along the real surfaces appear to diverge from the curve fits
along the ideal plane at later times.

Figures 3.22 and 3.23 present curve fits from Events 8 through 11
for the real and ideal surfaces, respectively. In Figure 3.23 note that
the ideal surface curve fits for Events 9 and 10 are about the same;

whereas, there is an unsuspected difference between curve fits for
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Events 8 and 11. Also note that there is a shifting of curves to the
right as expected with an increase in HOB.

In Figure 3.22 for a given HOB the curve fit for the rough sur-
face is to the right of the smooth surface. There is also a decrease
in slope which is indicative of a reduced shockwave velocity. In
addition both curves (smooth and rough) are shifted to the right with
an increase in HOB in a similar manner as for the ideal surface.

The nonsimul taneous detonations, Events 13, 15 and 16, were ob-
tained from 216-pound pentolite charges which were located at an HOB of
15 feet which scaled to 25 feet for a 1,000-pound equivalent charge
configuration. Event 12, which also utilized 216-pound charges, was
detonated simul taneously so as to determine scaleability to 1,000-pound
charges used in Events 8 through 11, i.e., (wg/w12)1/3. Event 8 charge
configuration and its real surface were closer to Event 12 than any of

the other three 1,000-pound events; therefore it was used for compari-

son purposes. Figures 3.28 and 3.29 show how well. the two events scale.

Since no ideal reflective surface exists during nonsimul taneous
detonations, only real and FA position-time data were available. No
position-time data were obtained along the real reflective surface
from Event 15 due to poor ambient lighting which prevented good shock-
wave resolution.

3.2 PEAK PRESSURE DATA FROM EVENTS 8 THROUGH 16

DRI Peak pressure values presented in Tables 3.1 through 3.10
were calculated by a welocity method using photographic position-time
data. Their values were determined by employing the well known

Rankine-Hugoniot equation:
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P=pP_ (2v/(y+ 1) [(wec)? - 1]

(0]

where: P is the peak overpressure above atmospheric (psi)
p is the atmospheric pressure (psi)
is the ratio of specific heats of air
V is the shock velocity

C is the calculated sound velocity at detonation

The value of y varies with the peak pressure and only slightly
within the photographed range of shockwave velocities ,recorded during
Events 8 through 16. Even though this variation was small it was taken
into account in the peak pressure calculations using data from NAVORD
Report 6075 (Ref. 5). Within the range of peak pressures determined
herein, v varied from 1.402 to 1.396.

The sonic velocity (C) at the time of detonation was calculated

using the expression:
C = 1087.6 + 1.99 t

where: C is the sonic velocity (ft/sec)
t is the ambient temperature (degrees centigrade)
The ambient temperatures at the time of detonation varied from + 22.9
to -19.1 °c.
The instantaneous velocities (V's) used in the peak pressure
calculations were determined from the slopes along the curve fit to the
e
position-time data at the distances presented in Tables 3.1 through 3.10.

Second-order polynomial curve fits were made to the arrival-time data

employing the least-~squares method,
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The DRI photographic values of peak pressure compare well to the

BRL gage data. Generally, the best comparisons occur at the mid-gage
distances (50 and 60 feet).

3.3 REFLECTION COEFFICIENT FROM EVENTS 8 THROUGH 11
The reflection coefficient (K) is defined as the ratio of weight

of a charge in free air to the weight of a charge fired near a reflecting

surface so that equal pressures are obtained at equal radial distances
(Ref. 6).
Consider: W = weight of charge

=
I

radial distance

scaled radial distance

]

By definition:

e 13
¢ = Re/Wg

These are free air conditions where A¢ is the scaled distance
¥

from the center of the charge in free air.

Also
i 1/
= R /W 3
1 m m

These are Mach-region conditions where A is the scaled radial

m

distance from the center of a spherical charge (to the reflecting sur-

face in the Mach-region).

C

So that for:
then
and

for W - | ‘!J.
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Wgl/3 = A/
or
We = On/2g)? = K
Since the charges in the DIPOLE WEST Series were detonated at an
altitude of approximately 2,320 feet above sea level, the peak pressure-
distance values were adjusted to sea level by the well known Sachs
Scaling law (Ref. 7). These altitude scaling laws, as presented in
Ref. 7, assert that in moving a charge of constant weight from one
ambient pressure (pj) to a higher ambient pressure (p;) the blast wave
at any distance R] is transformed into another blast wave at a lesser
distance Ry where:
Ry = Ry (91/92)]/3
and the peak overpressure is increased in a ratio (pz/p1) or:
Py =Py (py/py)
For the four events analyzed here the ambient pressure (p])
varied from 13.49 to 13.68 psi.
The following tabulation presents parameters used in the calcu-
lation of the average reflection coefficient for the ideal plane for

Event 11 adjusted to sea level and one pound equivalent weight.

Where:
R radial distance from charge at site

p calculated peak pressure at site
R radial distance adjusted to sea level
P calculated peak pressure adjusted to sea level

Am R, scaled to I-pound

A free-air distance for 1-pound equivalent weight
at sea level for specific values of P
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At Site Adjusted to =
(2320 ft) Sea Level Sciled to 1-P2und“

T - T A T T R )
51.4 70.5 ks.o 75:7 4.90 3.53 1.388
55.9 62.3 53.3 66.9 5.33 3.70 1. 447
60. 4 54.2 57.6 58.2 5.76 3.92 1.469
65.0 k6.0 62.0 49. 4 6.20 b.13 1.501
69.6 37.8 66.3 40.6 6.63 4. 49 1.477
74.3 29.6 70.8 31.8 7.08 5.00 1.416
79.1 21.4 75. 4 23.0 7.5 5.80 1.300
83.8 13.2 79.9 14.2 7.99 7.25 1.102

*Ref. 6 Average 1.387

The average value of X /A¢ is 1.387. The value of K is (1.387)3
or 2.67, i.e., the 1-pound charge appears to have a weight of 2.67 pounds
when its peak pressure output is measured along the ideal reflective
surface.

Table 3.11 presents reflection coefficients for various surface
material. Note that for both DRI and BRL data the ideal plane reflec-
tion coefficients for the different HOB's (15 and 25 feet scaled to 1.5
and 2.5 feet for a 1-pound charge) were, as expected, generally greater
than from a concrete surface. Unexpectedly, the smooth hard surface
had higher reflection coefficients than the concrete. The rough surface
for Events 10 and 11 had reflection coefficients greater than DR! ground
(grassy, irreqgular surface found at 10,800 feet in the Rocky Mountains)

and DRI snow (undisturbed snow having a density range from 0.11 to 0.35

89




grams per cubic centimeter, found at the same 10,800 foot site, Ref. 8)

but smaller than for the smooth and concrete surfaces.

Reflection Coefficients for Various Surface Materials

TABLE 3.11

DIPOLE
DIPOLE WEST  WEST Concrete” Ground =~ Snow =
Event HOB Surface DRI BRL Average BRL DR DR
8 245 ldeal <15 ZaHi) 2.3 2.32 1.88 1.50
8 2as Smooth .49 2925 237 2.32 1.88 150
9 Tty ldeal .58 2.48 2.53 2,02 1.65 1.40
9 TS Smooth .38 216 2.2 2. 02 1.65 1.40
10 i, ldeal oI5 213 2.64 2.02 1.65 1.40
10 1.5 Rough .86 .73 1.80 2,02 1.65 1.40
11 295 ldeal .67 2533 2.50 e I 1.88 1.50
11 2.5 Rough .01 1.87 1.94 2.32 1.88 1.50
Ref. 6
Ref. 8
3.4 TRIPLE-POINT PATHS EVENTS 8 THROUGH 16

The horizontal and vertical positions of the path

of the

triple-point (intersection point of the incident, reflected and Mach-

region shockwaves) were obtained photographically at the same time as

the Mach-region shockwave transit along the reflective surfaces.

data are presented in Figures 3.34 through 3.45.

These

data were scaled

to 1,000-pounds. Figures 3.34 and 3.35 indicate that the triple-point

path has a greater slope (also a faster rise with time) from the ideal

o oA OIS 555 s o
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Figure 3.35. Triple-Point Paths From Real and ldeal
Surfaces From Event 9, HOB = 15 Feet.
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